
Chapter 1
Sets1

1.1 Writing sets down
Sets
In mathematics, any collection of mathematical objects will be called a
set. For example,

{1, 2, 3},
denotes the set that contains the numbers 1, 2 and 3 (and nothing else). As to what really con-

stitutes a ’mathematical
object’ and thus what is
really meant by a set,
we could define these
things precisely, but to
do so here would lead us
down dark alleyways.
Basically, you should
trust that whenever
your lecturer writes
down a set, he or she
is providing you with
a genuine set and
not some counterfeit
knockoff.

As well as numbers, all sort of things, such as matrices, vectors, functions
and even sets themselves, count as mathematical objects.
Typically, sets are denoted using capital letters, such as A,B, C , or
X, Y , Z , etc. The members of a set are called its elements. If A de-
notes the set above, then 1, 2 and 3 are elements of A (and nothing else).
If X is a set and x is an element of X , then we write

x ∈ X.
The symbol ∈ should be interpreted as ‘is an element of’. If x and y are
both elements of X , then we can write

x, y ∈ X,
to denote this, and likewise for any number of elements. If x is not an
element of X , then we put a line through the ∈ symbol and write x /∈ X .

1This chapter is part of a university mathematics guide that is
still in development. It is intended principally for first years,
but also as a reference for people in later years. It has been
approved for use by the UCD Maths Support Centre.
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2 Sets

Example 1.1. Let A = {1, 2, 3}. Then 1, 2, 3 ∈ A, but 4 /∈ A.
Of course, there are lots of other things that are not in A. For example,
5, 6, 7, 8 /∈ A, and so on.

Defining sets using lists and dots
A set can be defined by listing its elements within curly brackets. We
have already seen an example of this above. If we wanted to write down
the set of all integers between 1 and 15 (inclusive), then we could do so
by writing

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
however, if the context is clear, we often spare ourselves the trouble of
writing out every number by using an ellipsis, a series of (usually) three
dots (. . . ). Thus the set above could also be denoted by

{1, 2, 3, . . . , 15},
and everyone would understand the meaning. Ellipses become particu-Regrettably, ‘ellipses’ is

the plural form of two
words meaning different
things, namely ‘ellipsis’
and ‘ellipse’.

larly useful when it would become truly nightmarish or even impossible
to define a set by literally listing every element of it, such as the set

{1, 2, 3, . . . , 1000},
of all integers between 1 and 1000, or the set

{1, 2, 3, . . . , n},
of all integers between 1 and n, where n is some indeterminate (it hasIf n = 1 or n = 2, then

we interpret
{1, 2, 3, . . . , n},

as {1} or {1, 2}, respec-
tively.

no specific value) integer greater than or equal to 1. In the last example,
n could be 7, in which case explicitly listing all elements of the set is
quite easy, but equally n could be 1090, in which case explicitly listing
all the elements would be tricky because 1090 exceeds current estimates
of the number of atoms in the observable universe.

Repetitions and order do not matter (too much)
If a set is defined by a list, and one or more of the elements are repeated,
then these repetitions are ignored. Moreover, the order in which the
elements are listed does not matter, though for clarity, if there is a natural
order to the elements then it is helpful to use it. Thus the set

{1, 7, 2, 4, 1, 7, 3, 2,−5},
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defined using a motley dishevelled jumble of numbers, is equal to the
much clearer and tidier looking

{−5, 1, 2, 3, 4, 7}.
In particular, given two distinct mathematical objects a and b (e.g. they
could be two distinct numbers), the set {a, b} is called an unordered
pair. It is called unordered precisely because (appeals to clarity aside)
the order in which the elements are listed does not matter:

{a, b} = {b, a}.

Some examples of sets in mathematics
In mathematics one frequently encounters sets containing infinitely many
elements. Ellipses (the dots, not the geometric figures) can be used to
denote them sometimes.

Example 1.2.
1. The set of natural numbers is denoted by

N = {1, 2, 3, . . . }.
2. The set of integers is denoted by

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

At the other end of the scale, we have the smallest set of all.
Example 1.3. The set having no elements whatsoever is called the
empty set, and is denoted by {} or ∅.

It may seem peculiar to consider such a thing, but it isn’t really. After Though throughout the
ages, the seemingly
humble 0 has had a
far more swashbucking
career than you might
imagine.

all, when we are counting things, the number 0 can be used in situations
where there is nothing to count in the first place, and these days nobody
minds the number 0. One may not think so at first glance, but the empty
set can be quite useful sometimes. Just to be clear, the empty set is not
nothing. Instead, it is the set that contains nothing. They’re different!
c© 2017 Richard Smith (maths.ucd.ie/~rsmith). Any marginal images are courtesy of Wikipedia.
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Defining sets using rules
Let’s move on. We have seen how sets can be defined by listing the
elements inside or by using ellipses. Quite often though this notation is
inadequate to accurately describe many sets. Instead, we use rules to
determine the elements that belong to these sets.
This is often done by taking an existing set, say N, and specifying a new
set by demanding that its elements belong to the set we started with
and obey an additional rule. For example,

{n ∈ N : 12 6 n 6 17} ,
denotes the set of all n ∈ N satisfying an additional rule, namely that n
is both greater than or equal to 12 and less than or equal to 17. In other
words, we have just defined the set

{12, 13, 14, 15, 16, 17}.
The colon above means ‘such that’, so you should interpret the notation
above as

‘the set of all n ∈ N such that 12 6 n 6 17’.
Sometimes people use a vertical line | instead of a colon to denote ‘such
that’. Also, you may find variations on the notation above, such as

{n : n ∈ N and 12 6 n 6 17} ,
which should be read as

‘the set of all n such that n ∈ N and 12 6 n 6 17’.
The meaning of this is exactly the same as above, and we get exactly
the same set! Sometimes different notation produces the same thing.
Lecturers use slightly different notation sometimes because each one
has his or her own individual style, but the differences should still remain
within accepted convention. In any case, if you are in any doubt at all
about notation, ask for clarification!
As we saw, the elements of the set above could be listed explicitly quite
easily, but in other situations this is difficult or impossible, and in yet
others it may simply be clearer or more convenient to use a rule.



1.1. Writing sets down 5

Example 1.4.
1. The set

{p ∈ N : p is a prime number} ,
denotes the set of all prime numbers 2, 3, 5, 7, 11, 13, 17, 19, . . . .

2. The set
{n ∈ Z : n is an odd number} ,

denotes the set of all odd integers 1,−1, 3,−3, 5,−5, . . . .

Sometimes we allow ourselves more complicated expressions on the left The elements of Q can
be listed explicitly, but
not in any way that is
easy on the eye.

hand side of the colon. This can help when the prospect of listing ele-
ments looks very unattractive, as in the next example.

Example 1.5. The set
Q = {m

n : m,n ∈ Z and n 6= 0} ,
is the set of rational numbers, that is, the set of all numbers that
can be written as the quotient of two integers m and n, where n is
non-zero.

Thus 12 , 114 ,−793 ∈ Q etc., but famously, in a result that goes back more
than two thousand years to the ancient Greeks, we know that √2 /∈ Q,
in other words, the (positive) square root of 2 is not a rational number.
There are other well known numbers that are not rational numbers and
thus do not belong to Q. For example π /∈ Q and e /∈ Q, where e is
the base of the natural logarithm. Despite not being rational, all these
numbers are examples of what we call real numbers.

Example 1.6. The set of real numbers is denoted by R.

Properly defining the set of real numbers takes some work, and we will
don’t do so here. Very roughly speaking, the set of real numbers is a
mathematical model of 1-dimensional physical reality. It contains all the
numbers that you could possibly need for doing finance or for measuring
quantities such as length, area, volume, mass, speed, and so on.
c© 2017 Richard Smith (maths.ucd.ie/~rsmith). Any marginal images are courtesy of Wikipedia.
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Quite often in calculus and mathematical analysis courses, it is necessary
to work with so-called intervals of R.

Example 1.7. Let x, y ∈ R, with x 6 y.
1. The set

(x, y) = {t ∈ R : x < t < y} ,
is known as the open interval having endpoints x and y. It is
the set of all real numbers t that lie strictly between x and y.
Thus 32 ∈ (1, 2), because 1 < 32 < 2, but 5 /∈ (1, 2) because it is
not true that 1 < 5 < 2.

2. The set
[x, y] = {t ∈ R : x 6 t 6 y} ,

is known as the closed interval having endpoints x and y. It is
the set of all real numbers t that lie between x and y, but not
strictly so.

The difference between (x, y) and [x, y] is that the former does not include
the end points, while the latter does: x, y /∈ (x, y) and x, y ∈ [x, y]. For
example, 3, 7 /∈ (3, 7), but 3, 7 ∈ [3, 7].
This may not seem like a terribly big deal at first glance, but this differ-
ence has profound consequences. Correctly distinguishing between the
two comes highly recommended. Notice that if x = y then (x, y) = ∅
and [x, y] = {x}. Indeed, observe that there are no real numbers t such
that x < t < x . Thus the set of all such numbers must be empty. There
is only one real number t such that x 6 t 6 x , namely x itself.
Every real number x has the property that x2 is non-negative. The ‘imag-
inary’ number i, which was introduced long ago, has the property that
i2 = −1. Despite being ‘imaginary’ and not ‘real’, this number has an
enormous range of applications to problems that are perfectly real. The
set of complex numbers gives us another opportunity to define a set
using an expression on the left hand side of the colon.

Example 1.8. The set
C = {x + iy : x, y ∈ R} .
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is the set of complex numbers.

When is a rule a rule?
As we have seen, sets can be defined using rules. But what constitutes
a valid rule? One could become overly enthusiastic and try to define the
set

{n ∈ N : n is feeling lonely today} .
However, this endeavour begins and ends in wretched failure. As this
example shows, clearly not everything masquerading as a rule will be
genuine.
It turns out that there is a series of other rules that can determine when
a rule is a proper rule or not, but spelling this process out explicitly
requires some reasonably advanced mathematics in its own right, and
doing so here would be counterproductive.
Instead, it is better to start off by trusting your lecturers to define the
sets they need using valid rules and, over time, to use these examples
to build up your own sense of what is valid and what isn’t. Roughly
speaking, a rule will be valid if, for every element under consideration,
it is absolutely clear whether the element satisfies the rule or not. For
example, given p ∈ N, either p is a prime number or it is not – there is
no middle ground or opportunity for ambiguity here.

Restoring order
Recall our unordered pairs,

{a, b} = {b, a}.
There is also the notion of an ordered pair. An ordered pair is a pair of It is regrettable that

the notation for ordered
pairs and open intervals
of real numbers looks
the same.
This means that there is
scope for ambiguity, but
usually it is possible to
tell one from the other
from the context.

mathematical objects a and b, and is denoted
(a, b).

The distinction between unordered pairs and ordered pairs is that if a
and b are distinct, then

(a, b) 6= (b, a),
in other words, the order in which a and b appear in the pair matters.
Ordered pairs are used, for example, to represent points in the 2-dimen-
sional cartesian plane. The ordered pair (1, 3) can be used to represent
c© 2017 Richard Smith (maths.ucd.ie/~rsmith). Any marginal images are courtesy of Wikipedia.
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the point having x-coordinate 1 and y-coordinate 3. Of course, this point
is different from the point having x-coordinate 3 and y-coordinate 1, and
so if we are represent such points using pairs of numbers (and doing so
is incredibly useful), then the order in which the numbers appear in the
pair has to matter.
Ordered pairs also count as mathematical objects, so we can form sets
of them.

Example 1.9. The set
R2 = {(a, b) : a, b ∈ R} ,

is the set of all ordered pairs of real numbers. This set can be used
to represent the entire 2-dimensional cartesian plane.

Ordered pairs are defined in such a way to ensure that (a, b) 6= (b, a)
whenever a and b are different. For the purposes of these notes however,
the definition (while relatively simple) has been conveniently tied up in
the attic where nobody can see it.

Sets of sets, and the joys of meaning things literally
Remember that sets themselves count as mathematical objects. This
means that sets can be elements of other sets.

Example 1.10. The set
{0, {1, 2}, {5, 7, 10, 11}},

is a set that contains precisely three objects, namely the number 0
and the sets {1, 2} and {5, 7, 10, 11}. It is not the same as

{{0, 1, 2}, 5, 7, 10, 11},
which is a set containing five objects, namely the set {0, 1, 2} and
the numbers 5, 7, 10 and 11.

As you can see from the example above, the placement of curly brackets
matters! It is unlikely that you will encounter sets containing other sets
in the first one or two years of a university mathematics degree, but you
will see them a lot in subsequent years.
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It is worth stressing the importance of placing brackets correctly and of
being precise in one’s mathematical notation in general. In everyday lan-
guage it is common for us to not literally mean what we say. For example,
when someone says ‘see you in a second’, they probably don’t literally
mean that. In mathematics however it is important to literally mean what
we say or write, so that ambiguity (which is sometimes necessary in life
but is poison for mathematics) can be avoided.
We are familiar with the use of brackets in arithmetic to determine the
order in which calculations are made, for example

(1 + 3)× 5 and 1 + (3× 5)
mean different things: the first yields 4×5 = 20 and the second 1+15 =
16. In the same way, when dealing with sets, putting brackets in different
places yield different sets, and just like arithmetic, it is important to
always keep this in mind.

Example 1.11. The set {∅} is a set containing precisely one element,
namely the empty set ∅. It is not the same as ∅, because this second
set contains no elements at all!

Of course, since {∅} is a set, we can form the set {{∅}}, that is, the set Actually there is a time
and a place for this sort
of carry on, namely a
university level course
in so-called ‘set theory’.
I solemnly promise that
the apparently useless
exercise of making sets
out of sets out of sets,
and so on, reaps huge
dividends for mathemat-
ics.

that contains the set that contains the empty set. We could go on, but
let’s not.

1.2 Doing things with sets
Now that we know how to define sets, we come to the business of doing
something with them.

Subsets, supersets and equality
We begin by looking at how to compare one set with another. Making
comparisons is important in life (I have twice as much money as you),
and without making comparisons one could not do a lot of mathematics.
We are familiar with the idea of comparing two numbers and finding that
one is less than or equal to the other, for example, 1 6 3 or −5 6 20.
There is an analogous way of comparing one set with another. Let A and
B be two sets. We say that A is a subset of B, written

A ⊆ B,
c© 2017 Richard Smith (maths.ucd.ie/~rsmith). Any marginal images are courtesy of Wikipedia.
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if every element of A is also an element B.
Given two numbers a and b, if a is less than or equal to b, written a 6 b,
then equally we can say that b is greater than or equal to a, or b > a.
When it comes to sets, if A is a subset of B, then equally we can say that
B is a superset of A, and write

B ⊇ A.

Example 1.12.
1. The set {−9, 58} has two elements, namely −9 and 58. Both

these numbers are also elements of {−11,−9, 1, 14, 27, 58}. Thus,
{−9, 58} ⊆ {−11,−9, 1, 14, 27, 58}.

Equally, {−11,−9, 1, 14, 27, 58} ⊇ {−9, 58}.
2. Every natural number is also an integer, so we have N ⊆ Z.
3. Every integer m ∈ Z is also a rational number, because

m = m
1 ,

and 1 ∈ Z is not zero. Therefore, Z ⊆ Q.
4. Every rational number is also a real number, so Q ⊆ R.
5. Every real number x ∈ R is also a complex number, because

x = x + i0,
and 0 ∈ R. Therefore, R ⊆ C.

If we have a series of sets, each one a subset of the next, then we can
string these comparisons together to form a chain. For instance,

N ⊆ Z ⊆ Q ⊆ R ⊆ C.
What about equality? As alluded to above, but never formally stated, we
say that two sets A and B are equal, written rather unsurprisingly as
A = B, when they contain precisely the same elements. In other words,
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A = B when every element of A is an element of B, and every element of
B is also an element of A. If A and B are not equal then we write A 6= B.
Notice that if A = B then we also have A ⊆ B (and B ⊆ A), because in
this situation, every element of A is also an element of B. Conversely, if
for sets A and B, we have A ⊆ B and B ⊆ A, then A = B. Compare this
with what happens with numbers: if a and b are real numbers and a 6 b
and b 6 a, then a = b.

Example 1.13. In Example 1.12, none of the sets under consideration
are equal.

1. The set {−11,−9, 1, 14, 27, 58} has an element (in fact several)
that is not in {−9, 58}. For example,
−11 ∈ {−11,−9, 1, 14, 27, 58} but − 11 /∈ {−9, 58}.

Therefore,
{−9, 58} 6= {−11,−9, 1, 14, 27, 58}.

2. The set of integers Z has an element (in fact, infinitely many),
for example −1, that is not an element of N. Thus N 6= Z.

3. Since, for example, 12 ∈ Q but 12 /∈ Z, we have Z 6= Q.
4. Because, for instance, √2 ∈ R but √2 /∈ Q, we have Q 6= R.
5. Finally, i ∈ C but i /∈ R, so R 6= C.

One last word on subsets. We know that A is a subset of B if every
element of A is also an element B. If this is not the case, then there must
be some element of A that is not an element of B. In this instance we say,
unsurprisingly, that A is not a subset of B, and write A 6⊆ B. Equally, we
can write B 6⊇ A. From the examples above, we have

{−11,−9, 1, 14, 27, 58} 6⊆ {−9, 58}, Z 6⊆ N, Q 6⊆ Z,
and so on.
But there is an important difference between comparing sets and com-
paring numbers. Given two real numbers a and b, if a is not less than or
equal to b, written a 66 b, then we conclude that b must be less than a.
c© 2017 Richard Smith (maths.ucd.ie/~rsmith). Any marginal images are courtesy of Wikipedia.
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We cannot draw the analogous conclusion when comparing sets: if A 6⊆ B,
then we cannot conclude that B ⊆ A.

Example 1.14. Take the sets {−9, 58} and {−9, 27}. Since 58 ∈
{−9, 58} but 58 /∈ {−9, 27}, we have

{−9, 58} 6⊆ {−9, 27},
and as 27 ∈ {−9, 27} but 27 /∈ {−9, 58}, we have

{−9, 27} 6⊆ {−9, 58},
as well.

If A 6⊆ B and B 6⊆ A then we call A and B incomparable. Like apples
and oranges in everyday life, or one Jedward twin and the other one,
sometimes things in mathematics simply cannot be compared.

Unions, intersections and complements
Imagine you have a list of email addresses. Some of them belong to
people who like coffee, others doughnuts (and some both). For whatever
reason, you may want email those people who like coffee or doughnuts (or
both) about some exciting new product that somehow incorporates either
a coffee or a doughnut. Instead, if your product somehow incorporates
both coffee and doughnuts in some unholy mixture, then you may want to
email only those people who like both coffee and doughnuts. Finally, if
you have a product that includes coffee but not doughnuts (for example,
coffee) you may decide that those who like coffee but in fact dislike
doughnuts are the only people exclusive enough to receive your exciting
news.
Mathematics has the necessary tools to construct the respective email
lists. Let A and B be sets. We define the union of A and B to be the set
of all elements that are either in A or in B:

A ∪ B = {x : x ∈ A or x ∈ B} .
The union is the set of all elements that are in at least one of A or
B: elements are allowed to be in both as well.



1.2. Doing things with sets 13

Example 1.15.
1. {6, 7} ∪ {7, 12, 13} = {6, 7, 12, 13}.
2. Let [5, 10] and [8, 16] be closed intervals of R. Then their union

is another closed interval:
[5, 10] ∪ [8, 16] = [5, 16].

Alongside the union, we define the intersection of A and B to the set of
all elements that are in both A and B:

A ∩ B := {x : x ∈ A and x ∈ B} .

Example 1.16. Let’s consider again the sets from Example 1.15.
1. {6, 7} ∩ {7, 12, 13} = {7}.
2. [5, 10] ∩ [8, 16] = [8, 10].

Two sets A and B are generally under no obligation to share any elements
at all. When this happens, and it often does, then the intersection of the
two is equal to the empty set. For example,

{1, 2} ∩ {3, 4} = ∅.
There are no elements that are in both {1, 2} and {3, 4}, hence the set
of all such (non-existent) elements is empty.
Finally, we define the complement of B with respect to A, or equivalently
the difference of A and B, to be the set of all elements that are in A but
not in B:

A \ B = {x : x ∈ A and x /∈ B} .

Example 1.17. Let’s return to the sets from Example 1.15 for a final
time.

1. {6, 7} \ {7, 12, 13} = {6} and {7, 12, 13} \ {6, 7} = {12, 13}.

c© 2017 Richard Smith (maths.ucd.ie/~rsmith). Any marginal images are courtesy of Wikipedia.
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2. We have
[5, 10] \ [8, 16] = {t ∈ R : 5 6 t < 8} ,

and
[8, 16] \ [5, 10] = {t ∈ R : 10 < t 6 16} .

We end with a small remark that happens to be pretty big. Remember
that two sets are said to be equal if they contain exactly the same ele-
ments. In Examples 1.15 to 1.17, a series of equalties between sets are
given, for instance, in Example 1.15 (1) it is stated that

{6, 7} ∪ {7, 12, 13} = {6, 7, 12, 13}.
Each such statement is a claim that needs to be justified. Mathematics
is very strict about this: don’t make a mathematical claim unless you can
back it up with hard proof! To justify these equalities, we need to make
sure that every element in a given set on left hand side of the equality
sign is an element of the corresponding set on the right hand side, and
vice-versa. In part (1) of Examples 1.15 to 1.17, this is quite easy, because
you can manually go though each element, one by one, and verify that it
is in the other set.
The claims in part (2) of these examples are harder to check because each
set in question contains infinitely many elements. Trying to manually
consider each element of, say [5, 10] ∩ [8, 16], one by one, and check that
it is in [8, 10], and vice-versa, would become thoroughly upsetting and
ultimately fruitless. What is needed instead is an argument that applies
simultaneously and equally well to all elements in question. Such an
argument will not be supplied here, but it is important to be aware of its
necessity.


